AN OXYGENATED BRANCHED-CHAIN FATTY ACID AND ITS METHYL ESTER FROM LAVANDULA GIBSONII*

S A PATWARDHAN and A S GUPTA

National Chemical Laboratory, Pune-411 008, India

(Received 22 April 1982)

Key Word Index-Lavandula gibsonii, Labiatae, fatty acid, 3-acetoxy-16-methylheptadecanoic acid

Abstract—The isolation and characterization of 3-acetoxy-16-methylheptadecanoic acid and methyl 3-acetoxy-16-methyl heptadecanoate as well as sitosterol and 5-hydroxy-6,7,4'-trimethoxyflavone from Lavandula gibsonii is described

INTRODUCTION

Lavandula gibsoni (L perrottetu) a medium sized shrub with clusters of tiny violet flowers is found on the hills of the Western Ghats of Maharashtra (India) An acetone extract of this plant has been reported to exhibit ovicidal, antifeedant, antigonadal, oviposition-deterrent and repellent properties against different insect species [1] This paper reports the isolation of a new oxygenated branched fatty acid and its methyl ester from the acetone extract of the whole plant The acid has been characterized as 3-acetoxy-16-methylheptadecanoic acid (1) by spectral and chemical methods

RESULTS AND DISCUSSION

Air-dried whole plant material of L gibsonii was powdered and extracted with acetone Chromatographic separations of the extract gave sitosterol, 5-hydroxy-6, 7, 4'-trimethoxyflavone, an ester 1a and a new fatty acid 1 Compound 1, a viscous liquid, analysed for C20 H38 O4 (M⁺, 342) and contained one acetoxy group, [IR (1745, 1235 cm⁻¹), ¹H NMR δ 1 98 (3H, s) 5 01 (1H, br) and one isopropyl group [1 H NMR $\delta 0.85$ (6H, d), 1.56 (1H, br)] On alkaline hydrolysis with methanolic potassium hydroxide, 1 yielded a hydroxy acid, 2 As expected the CHOAc broad signal in the original compound was shifted upfield to δ 3 9 in the methyl ester (2a) of the hydroxy acid and the IR spectrum showed a band at 3500 cm⁻¹ The mass spectrum of 2a (M^+ 314) showed diagnostic ions at m/z296 [M – H₂O]⁺, 283[M – OMe]⁺, 103 [CH(OH)CH₂ COOMe]⁺ and 223 [296 – CH₂COOMe]⁺ which indicate the presence of a hydroxyl group on the β carbon atom This assignment is confirmed by the spectral properties of the corresponding keto ester, 3, obtained by Jones' oxidation of 2a A two proton doublet at $\delta 2$ 33 in 2a is shifted to 3 30 as a sharp singlet in the ¹H NMR spectrum of 3, which also exhibited a two proton triplet at 2 48 (-CH₂COCH₂COOMe) and its IR showed bands at 1700 and 1750 cm⁻¹ arising from the COCH₂COOMe group The mass spectrum displayed significant peaks at m/z 312 [M]⁺, 239 [M-CH₂COOMe]⁺, 101 [COCH₂COOMe]⁺ and 73 [CH₂COOMe]⁺ which supports the presence of a keto group in a β -position to the ester group

$$Me-CH-CH2-(CH2)10--CH2-CH-CH2-COOR$$

$$Me$$

1
$$R = H, R' = OAc$$

1a
$$R = Me$$
, $R' = OAc$

2
$$R = H, R' = OH$$

2a
$$R = Me$$
, $R' = OH$

5
$$R = R' = H$$

$$\begin{array}{c} \text{Me-CH-CH}_2 - (\text{CH}_2)_{10} - \text{CH}_2 - \text{C-CH}_2 - \text{COOMe} \\ | \\ \text{Me} \end{array}$$

Compound 1a on refluxing with sodium ethoxide in ethanol produced a mixture of α , β - and β , γ -unsaturated acids from which E-2-16-methylheptadecenoic acid (4) (mp 62-63°) could be crystallized in pure form Catalytic hydrogenation of the mixture of olefinic esters yielded on hydrolysis the known 16-methylheptadecanoic acid (16-methylmargaric acid) (5) [2] Thus the structure of 1 was confirmed as 3-acetoxy-16-methylheptadecanoic acid

The neutral compound obtained from the acetone extract could be distilled at $195-200^{\circ}/0.6$ mm $C_{21}H_{40}O_4$, M^+ ,356 Its 1H NMR and IR spectra clearly indicated it to be methyl 3-acetoxy-16-methylheptadecanoate (1a)

EXPERIMENTAL

General All mps are uncorr IR were run in Nujol ¹H NMR was recorded at 60 MHz in CCl₄ or CDCl₃ containing 1 % TMS

^{*}NCL communication No 3012

Chemical shifts are expressed in ppm (δ) MS were measured at 70 eV

Extraction and isolation The whole plant (roots, stem, leaves and flowers) was air dried and powdered The powdered material (1 kg) was extracted with Me₂CO (41 × 3) at room temp and the solvent removed under vacuum to afford 48 g of a highly viscous dark material The Me₂CO extract (202 g) was chromatographed on a Si gel column, which was eluted successively with C₆H₆ (fraction A), C₆H₆-Me₂CO(9 1) (fraction B), Me₂CO (fraction C) and MeOH (fraction D) Fraction B (104g) was chromatographed (Si gel, 1 5 kg) using a C₆H₆-Me₂CO gradient solvent system The following fractions were collected B_1 (C_6H_6) (26 g), B_2 (C_6H_6 and C_6H_6 -Me₂CO, 98 2) (20 g), B₃ (C₆H₆-Me₂CO gradually increasing the proportion of Me₂CO up to 15%) (35g), B₄ (Me₂CO) (10g) Fraction B₂ was further chromatographed and early fractions (C₆H₆) contained sitosterol (0 46 g), mp 138-139°, mmp Later fractions (C₆H₆) gave yellow crystalline 5-hydroxy-6,7,4'-trimethoxyflavone (1 1 g) recrystallized (petrol, C_6H_6), mp 188-190° (lit 189-190° [3] and 187-190° [4]) ¹H NMR (CDCl₃) δ366 (3H, s, OCH₃), 382 (3H, s, OCH₃), 3 88 (3H, s, OCH₃), 6 35 (1H, s, H-3), 6 38 (1H, s, H-8), 681 (2H, d, H-3', H-5', J = 11 Hz), 763 (2H, H-2', H-6', J= 10 Hz) MS m/z (rel int) 328 [M]⁺ (100%), 313 (86), 299 (14), 285 (11 8), 282 (11), 181 (18), 153 (23), 143 (6 6), 133 (12), 89 (5 8)

Fraction B₃ was rechromatographed and early fractions (C₆H₆) gave a viscous yellow liquid, methyl 3-acetoxy-16methylheptadecanoate (1a) (0 55 g), bp 195-200°/06 mm, Found C, 71 16, H, 11 35, calc, for $C_{21}H_{40}O_4$ C, 70 74, H, 11 31 % IR v_{max} cm⁻¹ 2800, 1750, 1471, 1445, 1375, 1250, 1040 ¹H NMR (CCl₄) $\delta 088$ [6H, d, (CH₃)₂CH-, J = 7 Hz], 1.26 [24H, br s, chain-(CH₂)₁₂-], 1.56 (1H, br, Me₂CH-),1 93 (3H, s,- $CHOCOCH_3$), 2 38 (2H, d,- CH_2COOMe , J= 7 Hz), 3 56 (3H, s, $-COOC_{\underline{H}_3}$), 5 00 (1H, br, $-C_{\underline{H}_3}$) MS m/z (rel int) 356 [M]⁺ (30 5), 341 (8 4), 325 (74), 313 (90), 297 (100), 264 (93 8), 240 (61), 222 (56), 180 (26), 128 (43) Later fractions (C₆H₆) gave a dark viscous liquid (145g) which on keeping in petrol for 10 hr yielded a white solid (2g, not investigated further) The filtrate was separated by treating with aq NaHCO3 in the usual manner to form a neutral portion and the acid, 3-acetoxy-16-methylheptadecanoic acid (1) (7 g), pale yellow viscous liquid, which could not be distilled C20 H38 O4, $IR v_{max} cm^{-1}$ 3300, 2900, 1745, 1712, 1450, 1235, 1025 ¹H NMR (CCl₄) $\delta 0.85$ [6H, d, (CH₃)₂CH-, J = 7 Hz], 13[24H, br s, chain- $(C\underline{H}_2)_{12}$ -], 156(1H, br, Me₂- $C\underline{H}$ -), 1 98 (3H, s, -CHOCOCH₃) 2 5 (2H, d, -CH₂COOH, J = 6 Hz), 501 (1H, br, -CHOCOH₃), 85 (1H, br, -COOH, disappeared on addition of $D_2^{1}O$) MSm/z (rel int) 342 [M]⁺ (48), 299 (24), 282 (100), 264 (87), 239 (28), 222 (87 3), 196 (45), 180 (26), 151 (65), 125 (52)

Deacetylation of 1 Acetoxy acid (1) (0 23 g) was refluxed with K₂CO₃ (011 g) in H₂O (1 ml) and MeOH (20 ml) for 3 hr The solvent was removed under red pres and the residue diluted with H₂O The aq soln was acidified with dilute HCl and extracted with Et₂O The Et₂O extract was washed with H₂O, dried (Na2SO4) and evaporated The residue (02g) was crystallized from petrol 3-Hydroxy-16-methylheptadecanoic acid (2) was obtained as white shining plates, mp 70-71° Found C, 71 6, H, 12 28 Calc for C₁₈H₃₆O₃ C, 71 95, H, 12 08 % IR $v_{\text{max}}^{\text{Nujol}}$ cm⁻¹ 3340, 3050, 1720, 1468, 1451, 1300, 1080, 910, 725 ¹H NMR (CCl₄) $\delta 0.85$ [6H, d, (CH₃)₂CH-, J = 6 Hz], 1 31 [24H, br s, chain- $(C\underline{H}_2)_{12}$ -], 2 43 (2H, br, $-C\underline{H}_2$ -COOH), 3 93 (1H, br, –CHOH), $7\overline{3}$ (1H, \bar{br} , –COOH) MS m/z (rel int) $282 \left[M - H_2 O \right]^+$ (85), 264 (55), 222 (42), 196 (20), 149 (38), 95 (53 5), 89 (100), 85 (35), 83 (57), 71 (80) Methyl 3-hydroxy-16methylheptadecanoate (2a), bp $195-200^{\circ}/0.8 \,\mathrm{mm}$ Found C, 72 86, H, 12 11 Calc for $C_{19}H_{38}O_3$ C, 72 56, H, 12 18% IR $v_{\text{max}}^{\text{Nuyol}}$ cm⁻¹ 3500, 2950, 1725, 1453, 1449, 750 1 H NMR (CCl₄) $\delta 0$ 88 [6H, d, (CH₃)₂ CH-, J = 6 Hz), 1 36 [24H, br s, chain-(CH₂)₁₂-], 2 33 (2H, d, -CH₂ COOMe, J = 6 Hz), 2 83 (1H, br, -CHOH), 3 75 (3H, s, -COOCH₃), 3 90 (1H, br -CHOH) MS m/z (rel int) 314 [M]⁺ (3), 296 (13 5), 283 (4), 265 (11), 242 (7 5), 223 (16), 103 (100), 97 (26), 74 (46), 71 (54)

Oxidation of 2a 2a (0 107 g) in Me₂CO (10 ml) was treated with Jones' reagent (03 ml) at 15° with stirring After 15 min excess reagent was destroyed by adding MeOH, the reaction mixture poured in H₂O and extracted with Et₂O The Et₂O extract was washed with H₂O, dried (Na₂SO₄) and the solvent evaporated The residue (0 104 g) was distilled to yield methyl 3keto-16-methylheptadecanoate (3) bp 190-195°/06 mm Found C, 72 73, H, 11 5 Calc for $C_{19}H_{36}O_3$ C, 73 03, H, 11 61% IR v_{max} cm⁻¹ 2950, 1750, 1700, 1466, 1431, 1400, 1150, 990, 714 ¹H NMR (CCl₄) $\delta 0.88$ [6H, d, (CH₃)₂CH–, 1 28 [22H, brs chain $-(C\underline{H}_2)_{11}$ -], 1 56 (1H, br, $Me_2 C\underline{H}$ -), 2 48 (2H, t, $-CH_2COCH_2COOMe$, J = 6 Hz), 3 30 (2H, s, $-COC\underline{H}_2COOMe$), 3 70 (3H, s, $CO_2C\underline{H}_3$) MS m/z (rel int) 312 [M]⁺ (55), 294 (39), 256 (35), 239 (45 5) 220 (23), 129 (97 5), 116 (100), 101 (60), 97 (71), 73 (17)

E-2-16-Methylheptadecenoic acid (4) 1a (05g) was refluxed with 01 N NaOEt in EtOH (40 ml) for 17 hr EtOH was removed under vacuum and the residue after dilution with H2O was acidified with dilute HCl and extracted with Et2O The Et2O extract was washed with H2O, dried (Na2SO4) and the solvent removed under red pres The residue (041 g) was esterified with CH₂N₂-Et₂O and the mixture of Me esters chromatographed on Si gel Petrol-C₆H₆ (3 1) eluted the mixture of olefinic esters (03g) and petrol-C₆H₆ (11) eluted the hydroxy acid ester 2a (008g) The former mixture of esters was hydrolysed by refluxing with 05N EtOH-KOH for 5hr The mixture of acids thus obtained was crystallized from petrol to give pure 4, mp 62-63° Found C, 75 91, H 11 89 Calc for $C_{18}H_{34}O_2$ C, 76 54, H, $12 \, 13 \, \%$ IR $v_{\text{max}}^{\text{Nujol}} \text{ cm}^{-1}$ 3000, 1700, 1670, 1471, 1412, 1280, 980, 930, 720 ¹H NMR (CCl₄) δ0 88 [6H, d, (CH₃)₂CH-J = 6 Hz], 130 [22H, br s, chain -(CH₂)₁₁-], 215 (2H, br, $-CH_2CH = CHCO_2H$), 5 36 (1H, d, $-CH = CH-CO_2H$, J = 16 Hz), 67, 698 (1H, t of d each, $-CH_2CH = CHCO_2H$, J = 16, 6 Hz) 11 3 (1 H, s, -COOH) MS m/z (rel int) 282 [M]+ (35), 265 (20), 222 (17), 185 (23), 155 (14), 127 (51), 99 (70), 85 (58), 83 (92 5), 69 (100)

16-Methylheptadecanoic acid (5) The mixture of α, β- and β, γ-unsatd esters (0 062 g) was hydrogenated with PtO₂ (0 015 g) in EtOH (5 ml) The resulting ester was hydrolysed with 0.5 N EtOH-KOH to give 5, mp 67–68° (petrol) (lit [2] mp 67.5–68°) IR $v_{\rm max}^{\rm Nujol}$ cm⁻¹ 2950, 1700, 1460, 1360, 915, 715

¹H NMR (CCl₄) δ0 88 [6H, d, (CH₃)₂CH-, J = 6 Hz], 133 [26H, br. s, chain $-(CH_2)_{13}$ -], 2 25 (2H, br. $-CH_2$ COOH), 10.9 (1H, s, -COOH) MS m/z (rel int) 284 [M] + (100), 242 (44), 199 (8), 185 (31), 171 (12), 111 (18), 97 (34), 85 (48), 73 (51), 55 (59)

REFERENCES

- 1 Sharma, R. N., Bhosale, A. S., Joshi, V. N., Hebbalkar, D. S., Tungikar, V. B., Gupta, A. S. and Patwardhan, S. A. (1981) Phytoparasitica 9, 101
- 2 Milburn, A H and Truter, E V (1954) J Chem Soc 3344
- 3 Tatum, J H and Berry, R E (1972) Phytochemistry 11, 2283
- 4 Patwardhan, S A and Gupta, A S (1981) Indian J Chem 20B, 627